발행일 2017. 02. 27 **발행처** 융합연구정책센터 2017 FEBRUARY vol.60

Technology · Industry · Policy

다보스포럼 선정 10대 유망 기술

김보림 | 융합연구정책센터

융합

2017 FEBRUARY Vol. 60

WeeklyTIP

□ Policy

다보스포럼 선정 10대 유망 기술

김보림 | 융합연구정책센터

선정배경

- '다보스포럼'으로 불리는 세계경제포럼(World Economic Forum, WEF)은 2012년부터 매년 '떠오르는 10대 기술(Top 10 Emerging Technologies of 2016)'을 선정함
 - ※ 다보스포럼의 메타-협의회(Mets-Council)에서 편찬하고, 과학 잡지 사이언티픽 아메리칸(Scientific American)과 협업을 통해 선정·발표
 - 다보스포럼에서 선정한 10대 유망기술은 자체적으로 우리의 일상생활을 향상시키고 산업을 변화 시키며, 지구를 보호할 과학기술로 평가됨
- 글로벌 아젠다 '4차 산업혁명'이 급격히 진행되고 있는 현재, 다보스포럼에서 선정한 미래의 유망기술이 우리 사회에 많은 영향을 미칠 것으로 기대됨에 따라 이 유망 기술들에 대해 알아보고자 함

02

개요

- 다보스포럼은 세계 경제에 대해 토론하고 연구하는 국제 민간회의로 독립적 비영리재단으로 운영
 - 기업인, 경제학자, 저널리스트, 정치인 등이 모여 세계 경제에 대해 토론하고 연구
 - ※ 스위스의 제네바에 위치하고 있지만, 매년 1~2월 그라우뷘덴 주에 위치하는 휴양 도시 다보스에서 열렸기 때문에 '다보스포럼' 으로 불림
- □ 다보스포럼의 미래기술 글로벌 아젠다 위원회(Global Agenda Council)는 경제·정치·정책 등의 분야에서 세계적인 리더 및 싱크탱크(Think Tank)들의 모임
 - 인류와 지구환경의 지속성장을 위해 필요한 주제에 대해 글로벌 아젠다 위원회를 통해 문제해결을 위한 비전과 전략을 제시
- '글로벌 아젠다 위원회'는 2012년 KAIST 이상엽 교수가 의장을 맡으면서부터 매년 '미래유망기술 10선'을 선정함

- 지난 3년간 세계경제포럼에서 선정한 미래유망기술을 살펴보면, '14년, '15년에는 전기·전자· 기계관련 기술이 주를 이루고 다음으로는 바이오 관련 기술들이 선정되었으며, '16년도에는 기존 기술에 IoT를 접목한 기술*들과 여러 분야를 융합한 융합기술**들이 주로 선정됨
 - * 나노센서와 나노사물인터넷, 자율주행자동차, 개방형 인공지능 생태계 등
 - ** 장기 칩, 광유전학, 시스템 대사공학 등
- 특히, '16년도에는 우리나라에 한국과학기술원(KAIST) 이상엽 교수가 창시한 시스템 대사공학이 선정되어 세계적으로 주목을 받음

▼ 표 1. 2014~2016 세계경제포럼 선정 미래유망기술 10선

2014년	2015년	2016년		
신체적응 웨어러블 전기전자기술	연료전지 자동차	나노센서와 나노 사물인터넷		
나노 구조 탄소복합체	차세대 로보틱스	차세대 전지		
해수담수화 과정에서 금속 채취	재활용 가능한 열경화성 고분자	블록체인		
전기저장 그리드	정밀한 유전공학 기술	2D소재		
나노와이어 리튬이온 전지	첨삭가공	자율주행자동차		
스크린없는 디스플레이	다가오는 인공지능	장기 칩		
인간 마이크로비옴 치료제	분산 제조업	페로브스카이트 태양전지		
RNA기반 치료제	'감지와 회피' 드론	개방형 인공지능 생태계		
개인 계량화 및 예측분석	뉴로모픽 기술	광유전학		
뇌-컴퓨터 인터페이스	디지털 게놈	시스템대사공학		

※ 출처 세계경제포럼, 생명공학정책연구센터 재인용

10대미래유망기술 2016년, 다보스포럼 선정

우리일상을배꿀

01 나노센서와 나노 사물 인터넷

▲ 그림 1. 사물인터넷 이미지

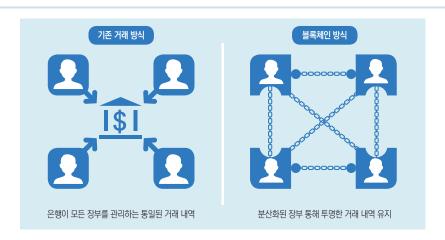
※ 이미지 출처 A. Pitsilides, "Internet of Things: A glimpse overview ", 2014

- 나노센서는 나노미터(10억분의 1미터) 크기의 센서로, 사람의 몸 안에서 순환시키거나 건설 자재에 섞을 수 있을 정도로 작은 크기
- 사물인터넷은 사물에 센서를 부착해 실시간으로 데이터를 인터넷이 주고받는 기술로, 나노 센서와의 접목을 통해 의약, 건축, 농업, 산업 재료, 기계, 에너지 효율 등 여러 분야에 접목이 가능
 - WEF는 2020년까지 300억 개의 기기가 사물인터넷 기술로 연결될 것으로 전망('16, 다보스포럼)

02 차세대 전지

- 차세대 전지는 2차 전지의 수요가 급증하면서 기존 성능을 개선한 2차 전지를 의미함
 - 2차 전지는 일상 생활에서 쓰는 스마트폰, 태블릿 PC, 노트북 등 IT 기기에 공통적으로 사용되는 배터리로, 한국의 새로운 먹거리 산업으로 주목받고 있음
 - ※ 삼성SDI, LG화학 등이 글로벌 시장의 후발주자로 1997년 2차 전지 개발을 시작하여, 상용화 10년만에 세계 시장 점유율 1위를 달성하는 등 최고 기술 보유
- 현재 활발하게 연구가 진행 중인 나트륨, 알루미늄, 아연 기반의 2차 전지 기술은 기존 리튬이온 전지의 성능을 뛰어넘어 산업 전반에 영향을 줄 것으로 기대됨

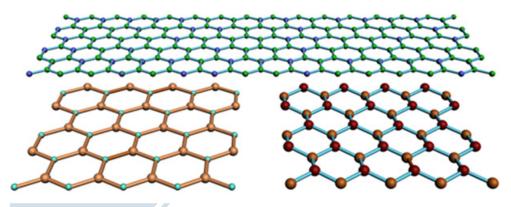
▼ 표 2. 차세대 전지의 구성 요소 및 장·단점


	구성요소	장점	단점
리튬-황 전지	 양극: 황 또는 황화합물 음극: 리튬 금속 전해질: 유기계/고체 전해질 	• 고용량 및 낮은 제조 원가 • 기존 공정의 활용 가능	지속적인 충·방전 시 양극재(황)의 감소로 수명 저하 황에 의한 제조설비의 부식
리튬-공기 전지	 양극: 공기(산소) 음극: 리튬 금속 전해질: 유기계/고체 전해질 	• 전지 셀 구조 단순 • 고용량 및 경랑화 가능	 고순도 산소 확보 難 산소 여과 장치, Blower 등 추가 장치로 인해부피증가
나트륨/마그네슘 전지	양극: 금속화합물 음극: 나트륨/마그네슘 전해질: 유기계/고체 전해질	• 저가화 및 고용량에 용이	• 양극재 후보 물질 少 • 긴 충· 방전 시간
전고체전지	양/음극: 기존 또는 他 차세대 전지의 양/음극 활용 가능 전해질: 세라면(황화물/신화물), 고분자, 복합재 등	노은 안전성 및 고용량 가능 다양한 어플리케이션(초소형 전자기기 ~전기자)에 활용기능	높은 계면저항 유해 가스인 황화수소 발생(황화물계) 또는 낮은 저온 특성(고분자)

※ **출처** LG경제연구원 보고서

블록체인

- 블록체인은 가상 화폐로 거래할 때 해킹을 막기 위한 기술로 공공 거래 장부라고도 부름
 - 거래에 참여하는 모든 사용자에게 거래 내역을 보내주며 거래 때마다 이를 대조해 데이터 위조를 막는 방식으로, 대표적인 온라인 가상 화폐인 비트코인에 적용되어 있음
 - ※ 비트코인은 누구나 열람할 수 있는 장부에 거래 내역을 투명하게 기록하며, 비트코인을 사용하는 여러 컴퓨터가 10분에 한 번씩 이를 검증하여 해킹 방지
 - WEF는 올해까지 전 세계 은행의 80%가 블록체인기술을 도입할 것으로 전망했으며, 전문가들은 블록체인이 향후 세계 경제 변화를 주도할 것으로 예측



▲ 그림 2. 기존 거래 방식과 블록체인 방식의 거래내역의 차이

※ **출처** SW중심사회

04

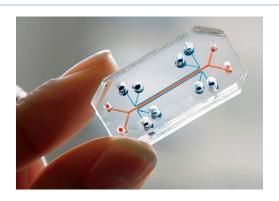
평면(2D)소재

▲ 그림 3. 평면(2D) 소재

※ 이미지 출처 http://polymer.zju.edu.cn/english/redir.php?catalog_id=65278&object_id=84042

- 평면(2D) 소재는 2차원 소재로서 얇고 잘 휘어지면서 전기적 특성이 좋아 반도체와 태양전지, 디스플레이 등에 적용하는 연구가 활발히 진행되고 있음
 - 2D 소재 연구 개발로 생산비용이 급격히 하락하고 있으며, 특히 대표적으로 그래핀(Graphene) 같은 단일 원자층 소재는 공기필터, 정수필터, 웨어러블, 배터리 등 다양한 용도에 적용 가능할 것으로 전망

05 무인(자율주행)자동차


▲ 그림 4. 구글의 무인자동차

※ 이미지 출처 google

- 무인 자동차 산업은 현재 기술 개발 경쟁이 활발한 분야이나, 아직까지 무인 자동차를 완전히 합법화 한 나라는 없음
 - ※ 현재는 구글이 무인 자동차 개발과 도로 테스트 활동을 선도하고 있음
 - 그러나, WEF는 조만간 직접 운전하기 어려운 사회적 약자를 대신해 운전할 날이 머지않았으며, 이를 통해 사회적 약자들의 삶의 질이 향상될 것으로 전망함
 - 또한, 2025년까지 미국차의 10%가 무인자동차가 될 것으로 예측하였으며, 이 기술은 생명 안전과 공해 저감, 경제 개선을 견인할 잠재력 있는 기술로 평가하고 있음

06 인체 장기 칩(Organs-on-chips)

▲ 그림 5. 장기 칩

※ 이미지 출처 Harvard Magazine, 2016

- 🧶 인체 장기 칩 기술은 회로를 내제한 칩 위에 살아있는 장기를 구성하는 세포를 배양, 해당 장기의 기능 특성뿐 아니라 역학적 생리적 세포반응을 모방하는 기술
 - 메모리카드 크기의 사람 장기모형 개발을 통해 과거에는 불가능해보였던 생물학적 현상을 관찰할 수 있게 되었으며, 의료 연구와 신약 개발에 큰 혁신을 가져올 수 있을 것으로 전망됨
 - ※ 실제 사람을 대상으로 하지 않고도 다양한 의료 기술의 효과를 확인하고 신약 임상 실험을 시험할 수 있으며, '미니 뇌', '허파를 모사한 칩' 등이 개발

07 페로브스카이트 태양전지(Perovskite Solar Cells)

▲ 그림 6. 페로브스카이트 태양전지

※ 이미지 출처 Genesis Nano Technology, 2016

- 페로브스카이트는 새로운 태양광발전용 물질로 사면체 등 입방체의 결정구조를 가지며 부도체, 반도체, 초전도 현상까지 보이는 금속 산화물
- 기존 실리콘 태양전지에 비해 제작하기 쉽고, 어디에든 사용 가능하며, 효율이 획기적으로 향상될 것으로 기대되는 기술 분야
 - 현재 태양전지의 85%는 원자가 3차원적으로 질서 정연하게 배열된 단결정 실리콘 재질로, 이는 20%에 이르는 에너지 변환율과 20년 넘는 긴 수명을 가지고 있지만 생산 비용 측면에서 효율성이 떨어짐

08

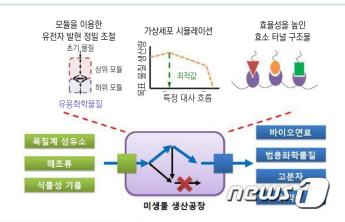
개방형 인공지능 생태계

▲ 그림 7. 인공지능 생태계 이미지

※ 이미지 출처 Computer World, 2016

- 인공지능은 4차 산업혁명을 주도할 핵심 기술로 거론되고 있으며, 특히 빅데이터를 활용한 인공지능은 다양한 산업에 직접적인 영향을 미치며 관련 생태계가 조성될 것으로 예상됨
 - 개인의 재정이나 건강을 관리하고 의료 부문의 혁신을 가져오는 등 광범위한 변화가 예상됨

광유전학(Optogenetics)



▲ 그림 8. 광유전학 실험 중인 쥐

※ 이미지 출처 Nature, 동아사이언스 재인용

- 🧶 광유전학은 광학과 유전학을 결합한 기술로 빛으로 생체 조직의 세포들을 조절할 수 있는 생물학적 기술 - 생체 조직 또는 자유롭게 움직이는 동물에서 개별 신경 세포들의 활동을 조절 및 관찰하고 신경활동의 조절이 어떠한 효과를 유발하는지 실시간 확인 가능
- 최근에는 빛을 뇌 조직 깊숙이 전달할 수 있는 기술이 개발되어 뇌 장애·질환을 가진 사람들에게 더욱 효과적인 치료법을 제공할 수 있을 것으로 예상

10 시스템 대사공학

▲ 그림 9. 시스템 대사공학

※ **이미지 출처** News1

- 🌑 시스템대사공학은 미생물의 유전자를 체계적으로 분석한 뒤 컴퓨터로 시스템을 설계해 유용한 화학 물질을 생산하는 기술
 - ※ KAIST 생명화학공학과 이상엽 특훈교수가 창안한 분야

- 대장균과 같은 미생물의 유전자를 조작해 이들의 신진대사 과정에서 화학물질을 생산하는 방식이라는 점에서 '세포 공장'이라 불리기도 함
- 현재까지 이를 통해 거미실크 단백질, 바이오에너지, 생분해성 플라스틱, 금속 나노 입자 등을 개발
- 《 시스템대사공학은 지속가능한 친환경적 기술로 기후변화나 화석연료 고갈 등의 문제를 해결할 수 있는 대안기술로 기대됨

04 NMM

- WEF는 10대 유망기술이 세계 주요 국가의 당면 문제를 해결할 수 있을 것으로 기대되지만 막대한 사회적, 경제적 위험도 갖고 있다고 평가함
 - 이에 해당 기술들이 유용한 방향으로 연구 개발이 진행 될 수 있도록 국가차원에서의 관리·감독이 필요하며, 연구자 스스로도 윤리의식을 갖고 연구 개발을 진행해야 함
- 4차 산업혁명 시대를 맞아, 이 유망 기술들을 통해 미래 지속성을 확보할 수 있도록 연구개발을 진행해야 함
 - 선정된 유망 신기술들은 무인자동차 같이 상용화에 가까운 기술들도 있지만 아직 요원한 기술들도 있어 앞으로 지속적인 연구 개발이 요구됨
- 또한, 해당 기술들은 대부분 여러 분야에서 활용 가능한 기반 기술들로, 이를 통해 다양한 산업에서의 변화가 전망되며 일상생활의 많은 부분에도 영향을 미칠 것으로 예상됨
 - 하나의 학문 분야가 아닌 비슷한 분야 또는 거리가 있는 분야들의 접목을 통해 좀 더 경제적이고 고효율의 기술이 개발된 것으로 보아 앞으로도 4차 산업혁명기 동안 융합기술의 발전이 비약적으로 이루어 질 것으로 전망됨

참고자료

- \bigcirc
- 1. BiolNwatch(BiolN+lssue+Watch): 16-64, 생명공학정책연구센터, 16.09.20
- 2. Top 10 Emerging Technologies of 2016, World Economic Forum 16.06
- 3. Chosun Biz, IoT·차세대 전지·칩 위의 장기...다보스포럼 선정 10대 미래 기술. 2017.02.20.

